IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.3, NO.4, OCTOBER-DECEMBER 2006 289

Automatic Synthesis of Efficient Intrusion
Detection Systems on FPGAs

Zachary K. Baker, Student Member, IEEE, and Viktor K. Prasanna, Fellow, IEEE

Abstract—This paper presents a methodology and a tool for automatic synthesis of highly efficient intrusion detection systems using a
high-level, graph-based partitioning methodology and tree-based lookahead architectures. Intrusion detection for network security is a
compute-intensive application demanding high system performance. The tools implement and automate a customizable flow for the
creation of efficient Field Programmable Gate Array (FPGA) architectures using system-level optimizations. Our methodology allows
for customized performance through more efficient communication and extensive reuse of hardware components for dramatic

increases in area-time performance.

Index Terms—Intrusion detection, graph algorithms, partitioning, performance, FPGA design.

1 INTRODUCTION

NETWORK-CONNECTED devices often have vulnerabilities
susceptible to exploitation. In order to protect indivi-
dual systems and the entire network, network operators
must ensure that attacks do not traverse their network links.
One method for understanding the attacks on a network is
an Intrusion Detection System (IDS). Intrusion Detection
Systems use sophisticated rules utilizing string matching to
detect potential malicious packets. In order to monitor
attacks, a network administrator can place an Intrusion
Detection System at a network choke-point such as a
company’s connection to a trunk line (Fig. 1). The IDS
differs from a firewall in that it goes beyond the header,
actually searching the packet contents for various patterns
that imply an attack is taking place or that some disallowed
content is being transferred across the network. Current IDS
pattern databases reach into the thousands of patterns,
providing for a difficult computational task.

Because the IDS must inspect at the line rate of its data
connection, IDS pattern matching demands exceptionally
high performance. This performance is dependent on the
ability to match against a large set of patterns and, thus, the
ability to automatically optimize and synthesize large
designs is vital to a functional network security solution.
Much work has been done in the field of string matching for
network security [4], [5], [6], [7], [8], [9], [10], [11], [12], [13],
[14], [15], [16]. However, the study of the automatic design of
efficient, flexible, and powerful system architectures is still
in its infancy.

Snort, the open-source IDS [1], and Hogwash [2] have
thousands of content-based rules. A system based on these
rule sets requires a hardware design optimized for

o The authors are with the Department of Electrical Engineering—Systems,
University of Southern California, EEB-200, 3740 McClintock Ave., Los
Angeles, CA 90089-2562.

E-mail: zbaker@usc.edu, prasanna@ganges.usc.edu.

Manuscript received 13 Aug. 2004; revised 20 July 2005; accepted 28 Mar.
2006; published online 2 Nov. 2006.

For information on obtaining reprints of this article, please send e-mail to
tdsc@computer.org, and reference IEEECS Log Number TDSC-0122-0804.

1545-5971/06/$20.00 © 2006 IEEE

thousands of rules, many of which require string match-
ing against the entire data segment of a packet.

These algorithms require significant computational re-
sources. To support heavy network loads, high-performance
algorithms are required to prevent the IDS from becoming
the network bottleneck. Even with the most sophisticated
algorithms, though, sequential microprocessor-based im-
plementations cannot provide the level of service available
in a customized hardware device. In [3], a Dual 1 GHz
Pentium III system, using 845 patterns, runs at only 50 Mbps.
For a small network with limited traffic and a maximum
wire speed of 100 Mbps, the software approach might be
acceptable. However, for larger networks and higher
bandwidth connections, the uniprocessor approach may be
forced to skip some packets and potentially let an attack pass
undetected. SPANIDS [4] utilizes a cluster of Linux-based
PCs to achieve the high bandwidth performance that we
achieve through an FPGA. The main disadvantage of this
approach is the physical space required for the cluster. We
are interested in providing high-bandwidth intrusion detec-
tion on a per-port basis, in which each port in a large
network switch would have independent IDS capabilities.

In Section 6, we show that a single FPGA device can
support multigigabit rates with 2,000 or more patterns. We
can achieve this performance using automated design
strategies for creating hardware architectures.

Parallel hardware architectures offer large advantages in
time performance compared to software designs, due to
easily extracted parallelism in the Intrusion Detection string
matching problem. An ASIC design would be fast but not
suitable due to the dynamic nature of the rule set—as new
vulnerabilities and attacks are identified, new rules must be
added to the database and the device configuration must be
regenerated. However, a Field-Programmable Gate Array
(FPGA) allows for exceptional performance due to the
parallel hardware nature of execution as well as the ability
to customize the device for a particular set of patterns. An
FPGA can provide near-ASIC performance and parallelism,
along with the ability to modify the hardware to a particular
set of patterns.

Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

290 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.4, OCTOBER-DECEMBER 2006

Unprotected Internet

Protected Intranet

Quarantined Packets

Fig. 1. Intrusion detection systems protect networks from external
threats. The use of FPGA allows a system to take advantage of massive
parallelism.

Early FPGA designs in the field [5], [6], [7] had excellent
performance for a small number of patterns, but when
integrated into a system, their area performance decreases
due to poor resource usage, and their time performance is
impacted by the interconnect and routing complexity.

Our basic architecture is a predecoded multiple-pipeline
shift-and-compare matcher. While this approach can be
considered “brute force” compared to a state machine
approach [8], [5], [9] or a hashing approach [10], the
simplicity of the units allows for exceptional area and time
performance. The basic architecture, as described in detail
below, reduces routing and comparator size by converting
incoming characters into many bit lines, each representing
the presence of single character. This approach has been
explored by several researchers [11], [8], [3].

This basic architecture is extended in various ways. To
allow for better area performance, we present a prefix tree
architecture that allows for significant reduction in redun-
dant comparisons by independently matching prefixes that
are shared across several patterns. To provide increased
throughput performance, we provide a design that repli-
cates a fraction of the hardware to allow for exact matching
for k bytes per cycle, where k is generally not greater than 8.

The architectures we have developed are only part of the
contributions of this paper. To achieve better utilization of
these architectures, system-level preprocessing steps are
required, serving various functions, including partitioning,
grouping, and code generation. These steps, by considering
the entire set of patterns in lieu of naive hardware
generation, produce higher efficiency in terms of patterns
matched per unit area and unit time.

By intelligently processing an entire rule set (Fig. 2), our
tool partitions a rule set into multiple pipelines in order to
optimize the area and time characteristics of the system. The
rule database is first converted into a graph representing the
similarity of the rule set. Depending on the tool flow
desired, the graph edges are weighted to provide higher
connectedness between rules with similar characters; this
allows for increased grouping of prefixes and/or general
shared-character grouping, as required. The graph is
partitioned based on the weighted graph and then prefixes
are grouped for the tree architecture, if required. Based on
the results of this preprocessing, the system is generated

Pattern
Database

Create Process Partitioned
- Weighted Similarity —»| Partition Graph > Graphs for Tree
Graph Architecture

Correlated
Synthesis and Generate l«— Content Linkages [«
Place and Route [« Synthesizable
(Xilinx tools) VHDL |

Create Pipeline
Data Structures

Match Output
Encoding

Fig. 2. Automated optimization and synthesis of a partitioned system.

from templates. By applying various graph partitioning
operations and trie techniques to the problem, the tool more
effectively optimizes large rule set as compared to naive
approaches.

This paper describes a methodology for creating Intru-
sion Detection Systems with customized performance, allow-
ing a designer to mix and match from a collection of process
steps and a family of architectures we have developed. We
begin with an overview of related work in the field
(Section 2), and then introduce the reader to our approach
(Section 3). We will discuss our basic architecture and then
move into the various methodology options that allow for
customized performance. We give results for the basic
architecture and its variations as compared to other work in
the field (Section 6), and review the tools (Section 5) we
have developed and some optimizations we have made to
decrease the total tool flow latency.

2 REeLATED WORK IN AUTOMATED IDS
GENERATION

Snort [1] and Hogwash [2] are current popular options for
implementing intrusion detection in software. They are
open source, free tools that promiscuously tap the network
and observe all packets. After TCP stream reassembly, the
packets are sorted according to various characteristics and,
if necessary, are string-matched against rule patterns.
However, the rules are searched in software on a general-
purpose microprocessor. This means that the IDS is easily
overwhelmed by periods of high packet rates. The only
option to improve performance is to remove rules from the
database or allow certain classes of packets to pass through
without checking. Some hacker tools even take advantage of
this weakness of Snort and attack the IDS itself by sending
worst-case packets to the network, causing the IDS to work
as slowly as possible. If the IDS allows packets to pass
uninspected during overflow, an opportunity for the hacker
is created. Clearly, this is not an effective solution for
maintaining a robust IDS.

Automated generation of optimized generic architec-
tures has been explored [12], [13], but domain-specific
tools have a distinct performance advantage in network
security. Automated IDS designs have been explored in
[5], using automated generation of Nondeterministic Finite
Automata. The tool accepts rule strings and then creates
pipelined distribution networks to individual state ma-
chines by converting template-generated Java to netlists
using Java-based Hardware Description Language (JHDL)
[14]. This approach is powerful, but performance is

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

BAKER AND PRASANNA: AUTOMATIC SYNTHESIS OF EFFICIENT INTRUSION DETECTION SYSTEMS ON FPGAS 291

reduced by the amount of routing required and the logic
complexity required to implement finite automata state
machines. The generator can attempt to reduce the logic
burden by combining common prefixes to form matching
trees. This is part of the preprocessing approach we take
in this paper.

Another automated hardware approach, in [15], uses
more sophisticated algorithmic techniques to develop
multigigabyte pattern-matching tools with full TCP/IP
network support. The system demultiplexes a TCP/IP
stream into several substreams and spreads the load over
several parallel matching units using Deterministic Finite
Automata pattern matchers. In their architecture, a Web
interface allows new patterns to be added, and then the new
design is generated and a full place-and-route and
reconfiguration is executed, requiring seven to eight
minutes. As their tools have been commercialized in [16],
they are not freely available to the community. However,
their development work includes network reconfiguration
[17], also explored in [18]. Network reconfiguration is
important as it allows for effective deployment of security
solutions to large numbers of customers without replicated
expensive place-and-route hardware.

System-level optimization has been attempted in soft-
ware by SiliconDefense [19]. They have implemented a
software tree-searching strategy that uses elements of the
Boyer-Moore [20] and Aho-Corasick [21] algorithms to
produce a more efficient search of matching rules in
software, allowing more effective usage of resources by
preventing redundant comparisons.

Using some ideas from [22], [5] implements an FPGA
design that deals with two special characteristics of firewall
rule sets: The firewall designer has design time knowledge
of the rules to implement and there are a large number of
rules. Because the rules are known beforehand, the firewalls
can be programmed with precompiled rules placed in the
rule set according to performance-optimizing heuristics.

The NFA concept is updated with predecoded inputs in
[11] and [8]. These papers address the problem of poor
frequency performance as the number of patterns increases,
a weakness of earlier work. This paper solves most of these
problems by adding predecoded wide parallel inputs to a
standard NFA implementations. The result is excellent area
and throughput performance (see Section 6).

In [6], a CAM-powered software/hardware IDS is
explored. A Content Addressable Memory (CAM) is used
to match against possible attacks contained in a packet. The
tool applies the brute force technique using a very power-
ful, parallel approach. Instead of matching one character
per cycle, the tool uses CAM hardware to match the entire
pattern at once as the data is shifted past the CAM. If a
match is detected, the CAM reports the result to the next
stage and further processing is done to derive a more
precise rule match. If a packet is decided to match a rule, it
is dropped or reported to the software IDS for further
processing. This requires O(mz) CAM memory cells and a
great deal of routing for each m-character layer of x rules.
Unfortunately, though, because matching is done in parallel
across all rules and across all characters in one cycle, this
sort of implementation requires a great deal of logic. While

this does provide O(n + m) worst-case rule matching time,
it does so at the cost of a large amount of hardware. Because
of the hardware complexity and chip limitations, the CAM
approach supports a limited number of units. However, the
ability to configure the pattern memories on the fly is an
advantage over hardwired approaches.

In [23], [11], [8], [24], [3], [25], hardwired designs are
developed that provide high area efficiency and high time
performance by using replicated hardwired comparators in
a pipeline structure. The hardwiring provides high area
efficiency, but are difficult to reconfigure. Hardwiring also
allows a unit to accept more than one byte per cycle,
through replication. A bandwidth of 32 bits per cycle can be
achieved with four hardwired comparators, each with the
same pattern offset successively by 8 bits, allowing the
running time to be reduced by a factor of 4 for an equivalent
increase in hardware. These designs have adopted some
strategies for reducing redundancy through predesign
optimization. The work in [24] was expanded in [3] to
reduce the area by finding identical alighments between
otherwise unattached patterns. Their preprocessing takes
advantage of the shared alignments created when pattern
instances are shifted by 1, 2, and 3 bytes to allow for the
32-bit per cycle architecture.

The notion of predecoding has been explored in [11] and
[8] in the context of finite automata. The use of large,
pipelined brute-force comparators for high speed was
initiated in [24] and continued in [26], [25]. Predecoding
in the context of brute-force comparators was developed
simultaneously in [25], [3], and our work [23].

The work in [25] utilizes a less elaborate predesign
methodology that is based on incrementally adding ele-
ments to partitions to minimize the addition of new
characters to a given partition. The use of trees for building
efficient regular expression state machines was initially
developed in [5]. We explored the partitioning of patterns in
the predecoded domain in [23]. We utilize these founda-
tional works and build automatic optimization tools on top.

3 OuUR APPROACH

This research focuses on automatic optimization and
generation of high-performance string-matching of high
volumes of data against large pattern databases. The tool
generates two basic architectures, a predecoded shift-and-
compare architecture and a variation using a tree-based
area optimization. In this architecture, a character enters the
system and is “predecoded” into its character equivalent.
This simply means that the incoming character is presented
to a large array of AND gates with appropriately inverted
inputs such that the gate output asserts for a particular
character. The outputs of the AND gates are routed through
a shift-register structure to provide time delays. The pattern
matchers are implemented as another array of AND gates
and the appropriate decoded character is selected from each
time-delayed shift-register stage. The tree variation is
implemented as a group of inputs that are prematched in
a “prefix lookahead” structure and then fed to the final
matcher stage. The main challenge in the tree structure is
creating the trees; this is discussed in Section 4.1.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

292

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.4, OCTOBER-DECEMBER 2006

Input Character

Character Decoders *
\ R |

A 4

T

Partition A, Reg 0

Partition B, Reg 0

Partition A
Match2 N Partition B
\ A A Y Y Y Y Y VY%V Match1
| ParitionA Reg1 | | Partition B, Reg 1 |
PartitionA —— .
Match1 ~——] .
Y Y Y Y VY Y Y Y V¥ |) Patition 8
| PartitonA Reg2 | | Partition B, Reg 2 |
Y VvV Y Y Y Y VY Y VY ¥V
| Partition A, Reg3 || Partition B, Reg 3 |
]
Y \ 4 Y Y Y \

Partition B, Reg 4 |

Fig. 3. The general architecture of our pipelined comparators design. Characters are converted to single bits in the first stage and then fed into the

pipeline, where they become operands for the pattern comparators.

With our domain-specific analysis and generation tool,
extensive automation partitions a rule database into
multiple independent pipelines. This allows a system to
more effectively utilize its hardware resources. The key to
our performance gains is the idea that characters shared
across patterns do not need to be redundantly compared.
Redundancy is an important idea throughout string
matching; the Knuth-Morris-Pratt algorithm [9], [27], for
instance, uses precomputed redundancy information to
prevent needlessly repeating comparisons. We utilize a
more foundational approach; by pushing all character-
level comparisons to the beginning of the comparator
pipelines (Fig. 3), we reduce the character match opera-
tion to the inspection of a single bit.

Previous approaches to string matching have all been
centered around a byte-level view of characters. Recent
work by our group and others [23], [11], [8], [3], [25] has
utilized predecoded, single-bit character reencodings in lieu
of delivering 8-bit wide data paths to every pattern-
matching unit. High-performance designs have increased
the base comparison size to 32 bits, providing high
throughput by processing four characters per cycle. How-
ever, increasing the number of bits processed at a single
comparator unit increases the delay of those gates. The
predecoding approach moves in the opposite direction, to
single-bit, or unary, comparisons. We decode an incoming
character into a “one-hot” bit vector, in which a character
maps to a single bit. As mentioned, other groups have
explored the use of predecoded characters. The architecture
in [25] utilizes SRL16 shift registers, where we utilize single-
cycle delay flip-flops. This reduces our reliance on Xilinx-
style hardware elements and may reduce interconnect costs
allowing hardware to spread out more on the device.

This allows efficient multibyte comparisons, regular
expressions, prefix trees, and even partial matches using
simple sum-of-products expressions.

Unfortunately, without some reduction in the character
set, unary representations suffer from the inefficiency
caused by the huge number of bit lines required for the
256 character ASCII set. In a set of long patterns utilizing
every character in the character space with low repetition, a
binary encoding such as the ASCII encoding would likely
be the most efficient strategy.

However, if the character set can be reduced, the number
of bit lines can be similarly reduced. The most trivial
example of reduced sets is DNA matching, where the only
characters relevant are {A,T,C,G}, represented as four one-
hot bits. String matching for network security is a more
interesting application as thousands of real-world patterns
need to be matched simultaneously at high throughput
rates.

Because intrusion detection requires a mix of case
sensitive and insensitive alphabetic characters, numbers,
punctuation, and hexadecimal-specified bytes, there is an
interesting level of complexity. However, each string only
contains a few dozen characters and those characters tend
to repeat across strings. In the entire Hogwash database,
there are only about 100 different characters ever used.
Some of those are case insensitive or can be made case
insensitive without loss of generality and we can convert
hexadecimal-specified bytes into their escaped character
equivalents (0-9, A-F). This reduces the number to roughly
75 characters. The pattern sets are then broken into smaller,
independent pieces. Generally, the optimal number of
partitions n is between two and eight. Other researchers
[3], [25] have explored other partitioning methods. The
approach in [3] breaks the rule set into a group of smaller
modules to allow for faster compilation. The approach in
[25] is similar to ours in that its purpose is to cluster the
most similar patterns together. Their strategy adds patterns
to a set of groups based on the minimum set difference
between the existing group and the pattern. The min-cut
strategy we utilize may allow for more flexibility should the

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

BAKER AND PRASANNA: AUTOMATIC SYNTHESIS OF EFFICIENT INTRUSION DETECTION SYSTEMS ON FPGAS 293

pattern1

AN
pattern2
root

cracker

r\1/acker
lecmd.exe

Fig. 4. A partitioned graph. By reducing the cut between the partitions,
we decrease the number of pipeline registers.

initial assignment groups prove nonoptimal. Because the
heuristics used for the min-cut problem allow all elements
to move between groups as the “optimal” partitioning is
reached, our approach may be less susceptible to getting
stuck in a local minimum due to poor initial random seeds.
However, it is difficult to compare the effectiveness of the
approaches.

We utilize the Metis partitioning library to partition the
patterns after they have been converted into a min-cut
problem [28]. The patterns are partitioned n ways such that
the number of repeated characters within a partition is
maximized, while the number of characters repeated
between partitions is minimized. The system is then
generated, composed of n pipelines, each with a minimum
number of bit lines. The value of n is determined from
empirical testing; we have found n = 2—4 most effective for
rule sets of less than 400 patterns. Conversely, for the 603
and 1,000 pattern rule sets, the maximum time performance
is achieved with eight partitions. However, as the area
increases moderately as the number of partitions increases,
the area-time trade-off must be considered.

Our partitioning strategy can partition a rule set to
roughly 30 bits, or about the same amount of data routing as
one of the 4-byte replicated architectures ([24], [26]).
However, the matching units are least 8 times smaller (32
down to 4 bits in an encoded design such as in [24]), and we
have removed the control logic of a KMP-style design such
as in [9].

Our unary design utilizes a simple pipeline architecture
for placing the appropriate bit lines in time. Because of the
small number of total bit lines required (generally
around 30) adding delay registers adds little area to the
system design. Our new design takes the general straight-
forward matching technique used in [24], [26], but moves
the character decoding to the first stage in the pipeline (as in
[8]) and reduces the overall size of the individual
comparators by one-eighth, as illustrated in Fig. 3.

First, the patterns are partitioned into several groups
(Fig. 4) such that the minimum number of letters have to be
piped through the circuit; that is, we give each group of
patterns a pipeline and go through various heuristic
methods to attempt to reduce the pipeline register width.
The effect of minimizing the number of characters is to
reduce the interconnect burden in each partition pipeline,
allowing for better time performance. In the results section,
we show that this approach is effective.

The graph creation strategy is as follows: We start with a
collection of patterns represented as nodes of a graph. Each
pattern is composed of letters. Every node with a given

letter is connected by an edge to every other node with that
letter. We formalize this operation as follows:

Sy ={a:a € C| aappears in k}, (1)
Ve ={p:peT} (2)
Ep={(k):kleT k#land S;nS £0}. (3)

Avertex Visadded to graph Rfor each pattern pin therule
set 7" and an edge £ is added between any vertex-patterns
that have a common character in the character class C.

This produces a densely connected graph, with almost
40,000 edges in a graph containing 361 vertices. Each
pipeline supplies data for a single group, as illustrated in
the system-level schematic in Fig. 3. By maximizing the
edges internal to a group and minimizing edges outside the
group which must be duplicated, we reduce the width of
the pipeline registers and improve the usage of any given
character within the pipeline. We utilize the METIS graph
partitioning library [28].

One clear problem is that of large rule sets (> 500 patterns).
In these situations, it is essentially impossible for a small
number of partitions not to require the entire alphabet and
common punctuation set. This reduces the effectiveness of
the partitioning step. However, if we add a weighting
function, the use of partitioning is advantageous as the
database scales toward much larger rule sets. The weighting
functions is as follows:

min([k],)
Wg = Z [(man(|k], |I]) —¢) if (k(3) == 1(4)) else 0]. (4)
=1

The weight Wg of the edge between k and [is equal to
the number of characters k(i) and (i) in the pattern, with a
first character equivalence weighted as the length of the
shorter pattern. The added weight function causes patterns
sharing character locality to be more likely to be grouped
together.

The addition of the weighting function in (4) allows the
partitioning algorithms to more strongly group patterns
with similar initial patterns of characters. The weighting
function is weak enough not to force highly incompatible
patterns together but is strong enough to keep similar
prefixes together. This becomes important in the tree-based
prefix sharing approach, described in Section 4.1.

4 CusToMIZED PERFORMANCE

Given the basic unary architecture, we can now diverge
from the basic partitioned flow and create a series of
architectures providing customized performance. While the
basic unary architecture has far higher area efficiency than
any other architecture (see Section 6), there are still
performance characteristics that can be further optimized.
We explore several variations:

e Tree-Based Prefix Sharing.
e High-Throughput Architecture.
e Correlated Content Layer.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

294 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.4, OCTOBER-DECEMBER 2006

Character Pipeline Registers

8 R VA
N1 N

10

£
<

1T

|
I~

4l
1
4
i
Tr

LILLTTTT 1L]

Prefix Level 1

Eﬂ

Fig. 5. An illustration of the tree-based hardware reuse strategy. Results
from two appropriately delayed prefix blocks are delayed through
registers and then combined with remaining suffixes. The key to the
efficiency of this architecture is that the prefix matches are reused, as
well as the character pipeline stages.

Prefix Level 2

Match

4.1 Tree-Based Prefix Sharing

The first optimization we make is a further area-optimiza-
tion that allows for sharing of often compared groups of
characters, first described in [5] and continued by [11] and
others but optimized here for use with a 4-bit FPGA lookup
table. We are only interested in finding the pattern prefixes
that are shared among matching units in a partition. By
sharing the matching information across the patterns, the
system can reduce redundant comparisons. This strategy
allows for increased area efficiency, as hardware reuse is
high. However, due to the increased routing complexity
and high fanout of the blocks, it can increase the clock
period. This approach is similar to the trie strategy utilized
in [5], in which a collection of patterns is composed into a
single regular expression. Their NFA implementation could
not achieve high frequencies, though, limiting its useful-
ness. Our approach, utilizing a unary-encoded shift-and-
compare architecture and allowing only prefix sharing and
limited fanout, provides higher performance.

Fig. 5 illustrates the tree-based architecture. Each pattern
(of length greater than eight characters as, otherwise, the
whole pattern would fit in the two prefixes) is composed of
a first-level prefix and a second-level prefix. Each prefix is
matched independently of the remainder of the pattern.
After an appropriate pipeline delay, the two prefixes and
the remainder of the pattern are combined to produce the
final matching information for the pattern. This is effective
in reducing the area of the design because large sections of
the rule sets share prefixes. The most common prefix is
/scripts, where the first and second-level prefixes are used
together. The 4-character prefix was determined to fit easily
into the common FPGA 4-bit lookup table, but it turns out
that four-character groups are highly relevant to intrusion
detection as well. Patterns with directory names such as
/cgi-bin and /cgi-win can share the same first-level prefix,
and then each have a few dozen patterns that share the -bin
or -win second-level prefix.

In Table 1, we show the various numbers of first and
second-level prefixes for the various rule sets we utilized in

TABLE 1
An lllustration of the Effectiveness of the Tree Strategy
for Reducing Redundant Comparisons

Number of Prefixes

No. of Patterns First Level Second Level
204 83 126
361 204 297
602 270 421
1000 285 528
2000 285 743

our tests. Second-level prefixes are only counted as different
within the same first-level prefix. For this table, we created
our rule sets using the first n rules in the Nikto rule set [2].
There is no intentional preprocessing of the rule sets before
the tool flow. The table shows that, on the average,
redundant prefix comparisons can be reduced two to three
times through the use of the tree architecture. However,
some of this efficiency is reduced due to the routing and
higher fanout required because of the shared prefix-
matching units.

On the average, the tree architecture is smaller and faster
than the partitioning-only architecture. In all cases, the
partitioned architectures (both tree and no-tree) are faster
than the nonpartitioned systems.

4.2 High-Throughput Architecture

The basic architecture described earlier emphasizes both
time and area performance but is centered around an 8-bit
input stream. This architectural variation provides signifi-
cantly increased throughput by replicating hardware. The
effect of this approach is to trade some of the area efficiency
of the basic architecture (and the prefix-tree variation) for
throughput. This is an effective approach and still yields
architectures with better area performance than other
designs.

While the frequency performance of the generated
architectures is very high, the 8-bit input limits the
throughput potential. At 8-bits per cycle, in order to reach
a 10 Gbps rate on a single stream, the device would have to
run at 1.25 GHz. Clearly, current FPGA technology cannot
support this. The best option, therefore, is to increase the
data path width into the device. This is a natural extension
to the basic architecture and has been explored by other
researchers. The first use of multibyte per cycle architec-
tures was in [24], where 32 bits were routed to individual
comparator units. The authors updated their multiple byte
approach with predecoding in [3], allowing significantly
higher area performance. An NFA architecture supporting
up to 16 bytes per cycle was introduced in [8]. In this
architecture, up to 100 Gb/s rates are possible, but at high
area costs.

The use of k-byte data words complicates the design, as
k essentially independent pattern offsets must be detected.
While we may launch the network stream into the pipeline
at k bytes per cycle, k separate offsets must be detected as
well. Thus, the final comparator stage of a 1,000 pattern

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

BAKER AND PRASANNA: AUTOMATIC SYNTHESIS OF EFFICIENT INTRUSION DETECTION SYSTEMS ON FPGAS 295

32
Incoming
Character

100

>

fo:

T

Fig. 6. An lllustration of a four-way front end. Character decoders are
replicated to allow for four different beginning offsets.

o0

e
2
i
'II
1
—

5 se s
5 55 55T

Q

database now presents roughly the routing complexity of a
1,000k pattern database.

We illustrate our four-way architecture in Figs. 6 and 7. It
is important to note that while the front and back-end
comparators are replicated k times, the pipeline itself is
shortened by k times, providing some relief from the
increase in area. The results of our experiments are shown
in Table 2. For these experiments, we have utilized the
optimal number of partitions from the basic unary
architecture. Overall, it is clear that the increase in area is
less than k times the 8-bit architecture and the decline in
clock frequency is acceptable.

4.3 Correlated Content Layer

Current IDS pattern databases reach into the thousands of
patterns, providing for a difficult computational task.
Further complicating the matter are rules that have multiple
patterns. In these rules, the patterns can be linked together
(correlated) by a distance constraint. Correlation can reduce
false positives by increasing the number of unique elements
that form the attack. Correlation also forms the backbone of
many attacks. Overflow attacks, for instance, are often
defined by a large amount of data before a null character.
By distance linking some invariant pattern such as "user"

:
i

|

(I

match

Fig. 7. An illustration of four-way back-end matchers. The pipeline
moves each block of decoded characters forward by four character
positions and pattern comparators select each decoded character line
appropriately.

TABLE 2
Performance Results for Four and Eight-Way Architectures
(32 and 64-Bit Data Paths, Respectively)

Number of | Number of | Area | Clock Period

Rules Partitions | (slices) (ns)

204 3 3153 5.27

Four 361 4 4780 6.64
Way 602 3 9332 7.95
1000 8 15010 7.1

Eight 204 3 4525 6.2
Way 361 4 7737 7.24

with the null character, the attack can be detected by noting
that the null character comes too many bytes after the
invariant.

Most IDS implementations at this point only consider the
basic string-matching problem. However, the correlated
content problem is becoming more popular. Through the
use of state machines, the architecture is sufficiently generic
that it can capture the behavior of any regular expression.
However, by forcing the hardware to generalize to an
unneeded degree, opportunities for extracting performance
are lost. It is generally unnecessary to provide this level of
flexibility for intrusion detection applications, especially
given the cost of highly complex hardwired state machines.
Another approach is to utilize a back end that connects the
matching results together using small embedded memories
[29]. Our approach is to integrate the correlation tightly
with the matching itself, before the match results are
encoded.

We consider two commonly used extensions, “distance:,”
which requires a minimum number of bytes between two
strings, and “within:,” which sets a maximum number of
bytes between two strings.

As discussed earlier, simplicity is the key to performance
on FPGAs. We apply this design paradigm to the correlated
content layer architecture. The utilization of structures that
the FPGA is built to implement can significantly improve
time and area results. Toward these goals, we utilize the
inherent strength of counter implementation of the Virtex-
style FPGAs. The fast carry logic allows a designer to create
counters with better area-time performance than a pipe-
lined state machine.

By default, the result of each pattern comparison is sent
into a large priority encoder that provides the external host
with the appropriate pattern identifier. However, correlated
content rules are not based on a single rule, but the
sequential detection of two or more rules. Thus, the tool
simply disconnects the output of the first comparator from
the normal result encoder and reroutes the match informa-
tion. Depending on the type of constraint required, the
system sets a counter and a valid bit. The counter is linked to
comparator logic to determine the satisfaction of the rule
constraints. The counter-linked comparators progressively
activate (in the case of distance constraint) or deactivates (in
the case of within constraint) the content matchers deeper in
the rule. This is illustrated in Fig. 8.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

296 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.4, OCTOBER-DECEMBER 2006

(2}

.E Counter 1
—1— Pattern 1

m > distance
o]]

k3] £

g Counter 2
5 —) Pattern 2

o < within
3 I

9 N

S

o[Pattern3 |—» Match (rule 1)
o

Fig. 8. An architectural meta77layer to provide multicontent rule support.

Table 3 details an interesting comparison in resource
utilization and performance in the correlation layer. The
experiments are based on the Snort Web-CGI database,
which has 347 rules requiring content matches and 420 total
strings to consider.

The first row of Table 3 gives results for the full
architecture, including linked strings and distance con-
straints. The second row removes the counter, but keeps the
rules linked. The clock rate increases by 0.1 ns, which is
insignificant, but expected, as the counter comparison does
add another bit to the comparator (the comparator
operators are implemented such that the result is available
at the clock edge of the next cycle). The most interesting
point is that the counters add only a few additional slices to
the overall area consumption. This is partly an artifact of the
FPGA fabric. The string-matching architecture is composed
mostly of Lookup Tables (LUTs) and flip-flops that create
the pipeline structure. In the sample rule set, there are
73 strings that are linked to a previous match. Because of
this linking, there are fewer entries in the result tree. Thus,
while adding the counters requires some flip-flops, the
overall design is balanced because of the reduced number
of memory elements required for the result tree.

5 TooL PERFORMANCE

After partitioning, each pattern within a given partition is
written out and a VHDL file is generated for each partition.
A VHDL wrapper with Digital Clock Managers for
supported Xilinx chips is also generated, given the
partitioning parameters. The size of the VHDL files for
the 361 rule set total roughly 300 KB in 9,000 lines. While the
automation tools handle the system-level optimizations, the
FPGA synthesis tools handle the low-level optimizations.
During synthesis, the logic that is not required is pruned—if
a character is only utilized in the shallow end of a pattern, it
will not be carried to the deep end of the pipeline. If a
character is only used by one pattern in the rule set and in a
sense wastes resources by inclusion in the pipeline, pruning
can at least minimize the effect on the rest of the design.
The worst-case graph size is (n—1)(n)/2 edges for
n vertices. The utilized-character sets are limited in size,
generally less than 50 and averaging between 10 and 20. For
our analysis, we can consider them constant, making the

TABLE 3
The Snort Web-CGlI Database:
347 Rules Requiring Content Searches Composed of
a Total of 420 Strings and 4,921 Characters

Database Type Clock Rate Area
Web-cgi with correlated content 4.4 ns 4590
Web-cgi with no counters 4.3 ns 4372

The Web-CGl database was chosen as it has a significant number of the
“within” and “distance” extensions implemented. The additional layer of
correlation state machines insignificantly reduces time performance.
Area is in logic cells.

time complexity of the sort O(n?), with a space complexity
of O(n?).

The time complexity of the general graph partitioning
problem using the Kernighan-Lin algorithm is O(n?logn),
with a space complexity equal to the size of the input graph.
Through the use of the four-character block, we implement
the tree structure in O(n) operations. Thus, the time
complexity of the complete process is O(n’logn) with a
space complexity of O(n?).

Because of the large number of patterns in current
intrusion detection databases [1], [2], creating the pattern-
connection graphs and subsequently partitioning the
graphs is an expensive operation. The Hogwash rule set
of roughly 7,000 strings creates a graph occupying over
215 MB. However, even with these large memory require-
ments, the process flow requires little time. For our tests, we
use the Nikto rule set of the Hogwash database [2].

In the 361 pattern, 8,263 character system, the design
automation system can generate the character graph,
partition, and create the final synthesizable, optimized
VHDL in less than 10 seconds on a desktop-class
Pentium III 800 MHz with 256 MB RAM. The 1,000 pattern,
19,584 character rule set requires about 30 seconds. The
2,000 pattern, 39,278 character rule set requires about
90 seconds.

All of the code except the partitioning tool is written in
Perl, a runtime language. The automatic design tools
occupy only a small fraction of the total hardware
development time, as the place and route of the design to
FPGA takes much longer, roughly 10 minutes to complete
for the 361 pattern, 8,263 character design, and several
hours for larger designs. A partial solution to this problem
lies in incremental synthesis, a strategy for reducing
hardware generation costs through reuse of a previous
generation’s place and route information.

5.1 Optimized Incremental Design
A problem with recent designs utilizing hardwired com-
parator modules is in the requirement for a full place-and-
route to make any change to the design, no matter how
small. Because of the exceptional area and time efficiency
possible with the customized design paradigm, this issue
has been largely ignored. There are various approaches to
allowing for changes in the rule set. The Bloom filter
approach [10] allows changes through use of hash-indexed
memory. Another approach uses memory-stored patterns
that are retrieved and compared as necessary [30].

Our approach is based on finding the optimal partition to
modify and then only placing-and-routing that section. By

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

BAKER AND PRASANNA: AUTOMATIC SYNTHESIS OF EFFICIENT INTRUSION DETECTION SYSTEMS ON FPGAS 297

Fig. 9. Area constraints and placed modules on Virtex Il Pro 50 device (image is cropped).

leaving the unmodified partitions alone, the overall time for
recompiling a rule set is significantly reduced.

For the situation of adding a rule, we utilize the min-cut
partitioned graph produced for the initial design. Deter-
mining the optimal partition to add a new pattern to is a
fairly trivial task, requiring only a consideration of char-
acters already mapped to the partition and preexisting
prefixes. The partition least modified by the addition of the
new rule is determined by comparing the predecoded bits
already within the partition.

We formalize this operation as follows, where S, is as
defined in (1), the set of characters required to represent the
new pattern p*. The set difference between the characters
currently represented in P and the characters that are
present in Sy is ¢;. The partition which will require the
addition of the minimum number of new characters is the
optimal partition P;. The optimal partition is selected from
the set of partitions P:

b = (Sp*\Pi)- (5)
P

Find j such that |§;| = rnjgl [(6:)]- (6)

Characters to add to partition j are in ;. (7

This VHDL code describing this partition is then
regenerated by the tool, requiring insignificant time. If the
new pattern shares a prefix with some other pattern in the
partition, the partial result of the previous pattern is
mapped to the new pattern, reducing new wiring. The
removal of rules is far easier, only the connections to the
final result encoder are removed. The new partition code is
sent to the incremental synthesis and place-and-route
functions of Xilinx ISE 6.2. The tool only resynthesizes the
modified modules. Because of the previously defined area
constraints, each pipeline module is independent of the
others. Thus, only the routing in the modified module
requires place and route.

In our current implementation, we first manually create
the area constraints on the device. Each partition is
generated as an individual module, and each module is
allotted sufficient space on the device. The Xilinx PACE tool
estimates how many slices are required, and we find it
useful to provide a 20 percent allowance to ease routing
congestion within the module. The entire design is

synthesized, placed, and routed, and the guide files are
maintained for the next incremental change.

An example of the area constraints and finished
placement is illustrated in Fig. 9 on the Virtex II Pro 50
device. Each box is the manually defined area constraint.
Within each box are the placed logic elements used by that
partition. Notice that the percentage utilization of each
constrained area varies; this can also be used to determine
the appropriate partition to which a new pattern should be
added.

Our results show that for a change of one pattern in a
single partition in system with p partitions (assuming the
partitions are balanced), the time for place-and-route is
reduced to 1/p plus some overhead for reprocessing the
guide files. This overhead can be fairly large (approaching
50 percent of the total PAR time). In terms of real time, the
first place-and-route takes slightly more than eight hours
and modifying one partition requires one hour to process
the guide file and one hour to place-and-route the single
partition. However, without the use of incremental place-
and-route, the system would require a completely new
place-and-route, or p times additional time.

There are other techniques using TCAMs [31], [6] and
memory-based techniques [9], [10], [30] that achieve fast
modification of patterns using memory-based approaches.
However, these approaches are often constrained by the
amount of on-chip memory resources or require an
external RAM.

6 SUMMARY OF RESULTS

This section presents results based on partitioning-only
unary and tree architectures generated automatically by our
tool. The results are based on rule sets of 204, 361, 602 and
1,000 patterns, subsets of the Nikto rule set of the Hogwash
database [2].

The synthesis tool is Synplicity Synplify Pro 7.2 and the
place-and-route tool is Xilinx ISE 5.2.03i. The target device
is the Virtex II Pro XC2VP100 with -7 speed grade [32]. We
have done performance verification on the Xilinx ML-300
platform [33]. This board contains a Virtex II Pro XC2VP7, a
small device on the Virtex II spectrum. We have subsets of
the database (as determined to fit on the device) and they

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

298 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.4, OCTOBER-DECEMBER 2006

TABLE 4
Partitioning-Only Unary Architecture: Clock Period (ns) and Area (Slices) for Various Numbers of Partitions and Patterns in Sets

Number of Patterns in Ruleset
No. Partitions 204 361 602 1000 2000
1 4.179 5.175 5.33 5.41 6.6
Clock 2 4.457 4.497 5.603 5.17 5.79
Period 3 3.863 4.798 4.556 5.6 5.2
4 3.986 4.244 5.063 5.22 5.35
8 4.174 5.193 4.602 4.93 5.1
1 800 1198 2466 4028 6260
2 957 1394 3117 4693 7017
Area 3 1043 1604 3607 5001 7261
4 1107 1692 4264 5285 8977
8 2007 1891 5673 6123 11021
Total chars in ruleset: 4518 8263 12325 19584 39278
Characters per slice (max): 5.64 6.89 4.99 4.86 6.27

execute correctly at the speeds documented in Table 4. In
our tests, input data was stored in an onboard RAM and
then streamed into the IDS architecture. A commodity
network processor would provide a reordered network
stream to the FPGA in a deployable system, as they support
the high bandwidth serial communications pins provided
by Xilinx Virtex devices.

We utilized the tool set to generate architectural
descriptions for various numbers of partitions. Table 4
contains the system characteristics for partitioning-only
unary designs and Table 5 contains our results for the tree-
based architecture. As our designs are much more efficient
than other shift-and-compare architectures, the most im-
portant comparisons to make are between “1 Partition” (no
partitioning) and the multiple partition cases. Clearly, there
is an optimal number of partitions for each rule set; this
tends toward two or three below 400 patterns and toward
eight partitions for the 1,000 pattern rule set. The clock
speed gained through partitioning can be as much as
20 percent, although this is at the cost of increased area. The
tree approach produces greater increases in clock frequency
at a lower area cost. The 602 pattern rule set shows the most
dramatic improvements when using the tree approach,
reducing area by almost 50 percent in some cases; the

general improvement is roughly 30 percent. Curiously, the
unpartitioned experiments actually show an increase in
area due to the tree architecture, possible due to the
increased fanout when large numbers of patterns are
sharing the same prefixes in one pipeline.

In Table 4, we see that the maximum system clock is
between 200 and 350 MHz for all designs. The system area
increases as the number of partitions increases, but the clock
frequency reaches a maximum at three and four partitions
for sets under 400 rules and at eight partitions for larger
rule sets. Our clock speed, for an entire system, is in line
with the fastest single-comparator designs of other research
groups.

In Table 4, the results are collected and sent to the output
by an OR-tree. In this architecture, eight match signals are
collected and OR-ed together by two four-input lookup
tables. These blocks of eight fit the FPGA architecture well.
In this style, a controller determines which pattern was
matched after the fact, based on the known delay of the
pipeline and a simple lookup in the list of patterns sorted on
the reverse ordering of their characters.

Another option, more common in the field, is to provide
an encoding of the results. This can be very expensive, up to
90 percent more expensive in terms of area. We have

TABLE 5
Tree Architecture: Clock Period (ns) and Area (slices) for Various Numbers of Partitions and Patterns in Sets
Number of Patterns in Ruleset

No. Partitions 204 361 602 1000 2000

1 4.89 5.25 5.43 5.35 6.96

Clock 2 4.18 4.27 4.80 4.22 5.2
Period 3 3.99 4.15 4.32 5.08 4.97
4 4.10 4.10 4.54 4.69 5.44

8 4.03 4.43 4.63 4.9 5.51

1 773 1165 2726 4654 5967

2 729 1212 2946 3170 7008

Area 3 931 1410 2210 5010 8391
4 1062 1345 2316 5460 9276
8 1222 1587 2874 6172 11502
Total chars in ruleset: 4518 8263 12325 19584 39278
Characters per slice (max): 6.19 7.09 5.577 6.17 6.58

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

BAKER AND PRASANNA: AUTOMATIC SYNTHESIS OF EFFICIENT INTRUSION DETECTION SYSTEMS ON FPGAS

TABLE 6
Partitioning-Only Unary Architecture: Clock Period (ns) and Area (slices) for Various Numbers of Partitions and Patterns Sets

299

Number of Patterns in Ruleset
No. Partitions 204 361 602 1000 2000
Clock Period
(OR-tree) 1 4.18 5.18 5.33 5.41 6.6
(Encoder) 1 5.09 4.5 4.91 5.19 7.96
Area
(OR-tree) 1 800 1198 2466 4028 6260
(Encoder) 1 1246 1972 4017 9789 11261
Total chars in ruleset: 4518 8263 12325 19584 39278
TABLE 7
Performance Comparison of Various Approaches
Design Bytes Device Throughput | LC/Chr Perf.
USC Unary 4518 V II-Pro 100 2.07 Gb/s 0.46 4.5
USC Unary 39278 | V II-Pro 100 1.56 Gb/s 0.56 2.79
USC Unary w/ Encoder 4518 V II-Pro 100 1.6 Gb/s 0.55 2.91
USC Unary w/ Encoder 39278 | V II-Pro 100 1.0 Gb/s 0.57 1.75
USC Unary - Prefix Tree 4518 V II-Pro 100 2.00 Gb/s 0.42 4.76
USC Unary - Prefix Tree 39278 | V II-Pro 100 1.53 Gb/s 0.31 4.94
USC Unary - 4 byte 4518 V II-Pro 100 6.1 Gb/s 0.72 8.4
USC Unary - 4 byte 19584 V II-Pro 100 4.5 Gb/s 0.65 6.9
USC Unary - 8 byte 4518 V II-Pro 100 10.3 Gb/s 2.0 5.15
USC Unary - 8 byte 8263 V II-Pro 100 8.8 Gb/s 1.87 4.72
Los Alamos (FPL 03)[6] 640 V E 1000 2.2 Gb/s 15.2 0.15
UCLA - 4 byte (FPL ’02)[24] 1611 Altera EP20k 2.88 Gb/s 10 0.29
UCLA - 4 byte (FCCM '04)[3] 19021 | Sprtn 32000 | 3.2 Gb/s 0.71 45
U/Crete - 4 byte (FPL *03) [26] 2457 V II 6000 8 Gb/s 19.4 0.41
U/Crete - 4 byte (FCCM "04) [25] | 18032 V 1I 6000 9.7 Gb/s 3.56 2.72
GATech - 1 byte (FPL "03)[11] | 17537 V 1000 0.8 Gb/s L1 0.72
GATech - 4 byte (FCCM 04)[8] 17537 V II 8000 7.0 Gb/s 3.1 2.23

Area/character is in logic cells (one slice is two logic cells) and performance (in Gbps/cell/character). Throughput is assumed to be constant over
variations in pattern size. If not specified, the USC designs use an OR result tree. USC designs use optimal #/partitions From Tables 5 and 4.

implemented a priority encoder to allow for equivalent
comparisons between designs. Some designs preprocess the
rule set to ensure that multiple matches cannot be active in a
given block at any given time [3]. This allows the use of a
simple encoder instead of the priority encoder, at some area
and clock savings. We have designed a heavily pipelined
priority encoder design that does not cause much reduction
in time performance and has a moderate area impact.

In Table 6, we compare single partition (unpartitioned)
OR-tree results with the corresponding priority encoder
results.

Table 7 contains comparisons of our system-level design
versus individual comparator-level designs from other
researchers. We only compare against designs that are
architecturally similar to a shift-and-compare discrete
matcher, that is, where each pattern at some point asserts
an individual signal after comparing against a sliding
window of network data. We acknowledge that it is
impossible to make fair comparisons without reimplement-
ing all other designs. We have defined performance as
throughput/area, rewarding small, fast designs. In this
metric, architectures produced by our tools are exceptional.

Our tree design occupies roughly one slice per 5.5 to
7.1 characters. While this approach is somewhat limited by
only accepting eight bits per cycle,the area efficiency allows
smaller sets of patterns to be replicated on the device, as in
Section 4.2.

7 CONCLUSION

This paper has discussed a methodology and a tool for
system-level optimization using graph-based partitioning
and tree-based matching of large intrusion detection pattern
databases. By optimizing at a system level and considering
an entire set of patterns instead of individual string
matching units, our tools allow more efficient communica-
tion and extensive reuse of hardware components for
dramatic increases in area-time performance.

After a small preprocessing phase, our tool automatically
generates designs with competitive clock frequencies that
are a minimum of two times more area efficient than any
other discrete-comparator-based shift-and-compare design.
By trading some of the area efficiency of the basic
architecture for throughput, we can reach sustained
throughput rates above 10 Gbps, with area-time perfor-
mance still much higher than any other implementation.

ACKNOWLEDGMENTS

This research was supported by the US National Science
Foundation Information Technology Research Program
under award number ACI-0325409 and in part by an
equipment grant from Hewlett-Packard. Portions of this
paper appear as preliminary versions in FCCM 04, FPL 04,
and ANCS ’05.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

300

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 3, NO.4, OCTOBER-DECEMBER 2006

REFERENCES

(1]
(2]
(3]

(4

(5]

(6]

(7]

(8]

]

(10]

(1]

(12]

(13]

(14]

(15]

[16]
(17]

(18]

[19]

[20]

(21]

[22]

(23]

Sourcefire, “Snort: The Open Source Network Intrusion Detection
System,” http:/ /www.snort.org, 2003.

Hogwash Intrusion Detection System, 2004, http://hogwash.
sourceforge.net/.

Y. Cho and W.H. Mangione-Smith, “Deep Packet Filter with
Dedicated Logic and Read Only Memories,” Proc. 12th Ann. IEEE
Symp. Field Programmable Custom Computing Machines (FCCM '04),
pp. 125-134, 2004.

L. Schaelicke, K. Wheeler, and C. Freeland, “SPANIDS: A Scalable
Network Intrusion Detection Loadbalancer,” Proc. Computing
Frontiers Conf., pp. 315-322, 2005.

B.L. Hutchings, R. Franklin, and D. Carver, “Assisting Network
Intrusion Detection with Reconfigurable Hardware,” Proc. 10th
Ann. Field-Programmable Custom Computing Machines (FCCM "02),
pp. 111-120, 2002.

M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, and
V. Hogsett, “Granidt: Towards Gigabit Rate Network Intrusion
Detection,” Proc. 13th Ann. ACM/SIGDA Int’l Conf. Field-Program-
mable Logic and Applications (FPL '03), pp. 404-413, 2003.

R. Sidhu, A. Mei, and V.K. Prasanna, “String Matching on
Multicontext FPGAs Using Self-Reconfiguration,” Proc. Seventh
Ann. ACM/SIGDA Int’l Symp. Field Programmable Gate Arrays
(FPGA '99), pp. 217-226, 1999.

C.R. Clark and D.E. Schimmel, “Scalable Parallel Pattern Matching
on High Speed Networks,” Proc. 12th Ann. IEEE Symp. Field
Programmable Custom Computing Machines (FCCM "04), pp. 249-257,
2004.

Z.K. Baker and V.K. Prasanna, “Time and Area Efficient Pattern
Matching on FPGAs,” Proc. 12th Ann. ACM Int’l Symp. Field-
Programmable Gate Arrays (FPGA '04), pp. 223-232, 2004.

S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,
“Implementation of a Deep Packet Inspection Circuit Using Parallel
Bloom Filters in Reconfigurable Hardware,” Proc. 11th Ann. IEEE
Symp. High Performance Interconnects (HOTi '03), pp. 49-51, 2003.
C.R. Clark and D.E. Schimmel, “Efficient Reconfigurable Logic
Circuits for Matching Complex Network Intrusion Detection
Patterns,” Proc. 13th ACM/SIGDA Int’l Conf. Field-Programmable
Logic and Applications (FPL '03), pp. 956-959, 2003.

B. So, M.W. Hall, and P.C. Diniz, “A Compiler Approach to Fast
Design Space Exploration in FPGA-Based Systems,” Proc. ACM
Conf. Programming Language Design and Implementation (PLDI '02),
pp- 165-176, June 2002.

M. Haldar, A. Nayak, N. Shenoy, A. Choudhary, and P. Banerjee,
“FPGA Hardware Synthesis from MATLAB,” Proc. VLSI Design
Conf., pp. 299-304, Jan. 2001.

P. Bellows and B. Hutchings, “JHDL: An HDL for Reconfigurable
Systems,” Proc. Sixth Ann. IEEE Symp. Field Programmable Custom
Computing Machines (FCCM '98), pp. 175-184, 1998.

J. Moscola, J. Lockwood, R.P. Loui, and M. Pachos, “Implementa-
tion of a Content-Scanning Module for an Internet Firewall,” Proc.
11th Ann. IEEE Symp. Field-Programmable Custom Computing
Machines (FCCM ’03), pp. 31-38, 2003.

Global Velocity, http:/ /www.globalvelocity.info/, 2005.

P. Jones, S. Padmanabhan, D. Rymarz,]J. Maschmeyer, D.
Schuehler, J. Lockwood, and R. Cytron, “Liquid Architecture,”
Proc. 18th Ann. IEEE Int’l Parallel and Distributed Processing Symp.
(IPDPS '04), pp. 202-210, 2004.

Y. Ha, P. Schaumont, M. Engles, S. Vernalde, F. Patargent, L.
Rijnders, and H.D. Man, “A Hardware Virtual Machine for
Networked Reconfiguration,” Proc. IEEE Conf. Rapid System
Prototyping (RSP "00), pp. 194-199, June 2000.

C. Joit, S. Staniford, and J. McAlerney, “Towards Faster String
Matching for Intrusion Detection,” http://www silicondefense.
com, 2003.

R. Boyer and]. Moore, “A Fast String Searching Algorithm,”
Comm. ACM, vol. 20, no. 10, pp. 762-772, Oct. 1977.

A. Aho and M. Corasick, “Efficient String Matching: An Aid to
Bibliographic Search,” Comm. ACM, vol. 18, no. 6, pp. 333-340,
June 1975.

R. Sidhu and V.K. Prasanna, “Fast Regular Expression Matching
using FPGAs,” Proc. Ninth Ann. IEEE Symp. Field-Programmable
Custom Computing Machines (FCCM '01), pp. 227-238, 2001.

Z K. Baker and V.K. Prasanna, “A Methodology for the Synthesis
of Efficient Intrusion Detection Systems on FPGAs,” Proc. 12th
Ann. IEEE Symp. Field Programmable Custom Computing Machines
(FCCM '04), pp. 135-144, 2004.

(24]

(23]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

Y. Cho, S. Navab, and W. Mangione-Smith, “Specialized Hard-
ware for Deep Network Packet Filtering,” Proc. 12th ACM/SIGDA
Int’l Conf. Field-Programmable Logic and Applications (FPL '02),
pp. 452-461, 2002.

I. Sourdis and D. Pnevmatikatos, “Pre-Decoded CAMs for
Efficient and High-Speed NIDS Pattern Matching,” Proc. 12th
Ann. IEEE Symp. Field Programmable Custom Computing Machines
(FCCM "04), pp. 258-267, 2004.

I. Sourdis and D. Pnevmatikatos, “Fast, Large-Scale String Match
for a 10Gbps FPGA-Based Network Intrusion Detection System,”
Proc. 13th Ann. ACM/SIGDA Int’l Conf. Field-Programmable Logic
and Applications (FPL "03), pp. 880-889, 2003.

D. Knuth, J. Morris, and V. Pratt, “Fast Pattern Matching in
Strings,” SIAM]. Computing, pp. 323-350, 1977.

G. Karypis, R. Aggarwal, K. Schloegel, V. Kumar, and S. Shekhar,
“METIS Family of Multilevel Partitioning Algorithms,” http://
www-users.cs.umn.edu/~karypis/metis/, 2004.

M.E. Attig and J.W. Lockwood, “A Framework for Rule Proces-
sing in Reconfigurable Network Systems,” Proc. 13th Ann. IEEE
Symp. Field-Programmable Custom Computing Machines (FCCM '05),
pp. 225-234, 2005.

Y. Cho and W.H. Mangione-Smith, “Fast Reconfiguring Deep
Packet Filter for 1+ Gigabit Network,” Proc. 13th Ann. IEEE Symp.
Field Programmable Custom Computing Machines (FCCM '05),
pp. 215-224, 2005.

F. Yu, R. Katz, and T. Lakshman, “Gigabit Rate Packet Pattern-
Matching Using TCAM,” Proc. 12th IEEE Int’l Conf. Network
Protocols (ICNP), pp. 174-183, 2004.

Xilinx Inc., “Virtex II Pro Series FPGA Devices,” http://www.
xilinx.com/xInx/xil_prodcat_landingpage jsp?title=Virtex-1I+%
Pro+FPGAs, 2004.

Xilinx Inc., “ML-300 Development Board,” http://www.xilinx.
com/ml300, 2004.

Zachary K. Baker received the MS degree in
electrical engineering from the University of
Southern California in August 2002. He is now
a PhD candidate at USC, where he is
currently a research assistant (since March
2001). His research interests include hardware
architectures for pattern matching, intrusion
detection, and data mining. He has published
and presented his work at several interna-
tional workshops and conferences. He is a

student member of the IEEE.

Viktor K. Prasanna received the BS degree in
electronics engineering from Bangalore Univer-
sity, the MS degree from the School of Automa-
tion at the Indian Institute of Science, and the
PhD degree in computer science from Pennsyl-
vania State University. He is a professor of
electrical engineering and professor of computer
science at the University of Southern California
(USC). His research interests include high
performance computing, parallel and distributed

systems, network computing and embedded systems. He is the steering
committee cochair of the International Parallel and Distributed Proces-
sing Symposium (IPDPS) (merged IEEE International Parallel Proces-
sing Symposium (IPPS) and Symposium on Parallel and Distributed
Processing (SPDP)). He is the steering committee chair of the
International Conference on High Performance Computing (HiPC). He
serves on the editorial board of the Journal of Parallel and Distributed
Computing. He is the editor-in-chief of the IEEE Transactions on
Computers. He was the founding chair of the IEEE Computer Society’s
Technical Committee on Parallel Processing. He is a fellow of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 26, 2008 at 01:00 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

